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1 Introduction

1.1 Background and Motivation

Our client is S-Bank, the first and only ”supermarket bank” in Finland with 3,1 million
customers. It is the most rapidly growing bank with a reported profit of 24,8 million
euros in 2021. S-Bank is widely known as the secondary bank among Finnish consumers.

In this project, the focus is on the risk characteristics of the transactional retail deposits
used on a day-to-day basis by regular people. These are called non-maturity retail de-
posits for buying everyday necessities and receiving salaries. Not only can the risk factor
be economical for these deposits but also political and societal. Also, the reputation and
credibility of the bank are important for the customers to keep their money in the deposits.

Non-maturity deposits (NMDs) are deposits for which a contractual maturity has not been
stated. The depositors have the possibility to deposit or withdraw funds with no penalty,
so the balance of these types of funds might suddenly increase or decrease throughout
the day. The depositors value non-maturity deposits through two factors, received value
and perceived value. This means that higher interest rates paid to the depositors and
more significant barriers to withdraw the deposits create longer-term deposits. When
the market interest rates increase, the balance of non-maturity deposits tends to fall due
to the depositors finding more attractive investment opportunities elsewhere, and thus
withdrawing at least a part of their funds. Alternatively, when the interest rates are low,
non-maturity deposits are a more profitable option to consider. Cipu and Udriste (2009)
These changes may have a significant impact on banks, since in 2012 the proportion of
non-maturity deposits out of bank’s funds was 58% on average. Thus, non-maturity de-
posits are the primary funding source for an average bank Blochlinger (2015).

Due to the aforementioned reason, non-maturity deposits have been predicted based on
the interest rate levels. These models have been more helpful in an environment where
the interest rates have changed through time. Moreover, in recent years these have been
close to zero, and thus these models are not ideal. Interest rates are not the only reason
behind account behavior, and thus these models cannot give precise predictions. For this
reason, the other factors that explain the account behavior might be easier to spot when
there are no significant interest rate changes in the observed period.

Having no agreed-upon maturity, the balance of non-maturity deposits may fluctuate
quickly as clients withdraw and deposit money without any penalty. An intuitive exam-
ple of larger than normal withdrawals could be Christmas, as it could be expected that
buying Christmas presents causes some additional expenses for a significant share of the
population. Other such dates when one could expect abnormally large withdrawals or
deposits could be at the start of and the middle of the month, as rents and wages are
typically paid then. However, not all inflows and outflows are as recurring and small
as the aforementioned ones. During both the Global Financial Crisis and the European
debt crisis several bank runs occurred as people rushed to empty their bank accounts in
fear of losing all their money (Wikipedia contributors, 2022). During a bank run a large
share of the bank’s clients attempt to withdraw money from their accounts, which in fact
strengthens the bank run further; the likelihood that the bank defaults increases as more
people withdraw their money, which again gives an incentive to more clients to withdraw
their money. As a result, bank runs may happen suddenly and may result in the bank
running out of cash at which point they face bankruptcy.



The risk characteristics of NMDs can be observed by conducting analyses on the historical
data of customers’ money transactions in non-maturity deposits and find the best and
fittest model to predict the customers’ consumption behaviours and if different seasonal
periods have an effect. One of the critical factors in making credible analyses on NMDs
is to perform customer segmentation.

1.2 Objectives

This project aims to analyse the interest rate and liquidity risk characteristics of non-
maturing retail deposits. The specific objectives are:

e Developing a justified and documented model based on several variables such as

The economic environment
Product type
— Customer segment

— Calendar effects
e Comparing S-Bank’s data to the Finnish aggregate index data

e Finding out whether there is any structural change or regime shift present in the
data due to the Covid-19 pandemic

Developing a justified model for non-maturity retail deposits is our main task. Historically,
the NMDs have been modeled with respect to interest rates due to the opportunity cost
in the investment market. In recent years, the interest rates have been mostly negative,
and the interest rate-based models have not been developed for this kind of environment.
S-Bank’s non-maturity retail deposits do not gain a negative interest rate.

Time series-based models have also been used to predict non-maturity retail deposits. In
this project, we shall compare different models to see which of these best suit the S-Bank’s
data and which parameters sought to be used.

Traditional customer segmentation could improve the model accuracy, but account be-
havior could serve our client better. We will test how the account segmentation affects
the accuracy of our models.



2 Literature Review

2.1 Non-maturity Deposits

Despite scarcity of previous research focusing on non-maturity retail deposits, some frame-
works have been developed for their valuation. The first models were based on the
present values of expected future payments from retail deposits (O’Brien et al., 1994),
(Selvaggio, 1996) after which arbitrage-free pricing models were developed to incorporate
the prevailing interest-rate regime (Jarrow and Van Deventer, 1998). The dynamics of
non-maturity retail deposits have been previously modelled using autoregressive-moving-
average (ARMA) models (Hamilton, 1994) and stochastic models (Jarrow and Van De-
venter, 1998). Interestingly, the aforementioned studies have focused on modelling all
liabilities as an entity - pooling all types of clients into one. Although this clearly simpli-
fies the development of a modelling framework, a lot of information is evidently lost.

The non-maturing deposits are commonly segmented as stated by Kalkbrener and Will-
ing (2004). The authors state that it is common for banks to split the total volume of
accounts into two; a stable core part and a more volatile floating part, which is the funda-
mental idea behind the so-called non-maturation theory. This is justified as the number
of accounts is large, whereas the average volume per account is small in comparison.
Typically, the bulk of the accounts do not face large withdrawals — this is more of an ex-
ception. In the unlikely event of a bank run this phenomenon would most likely not hold,
from a modeling perspective this can be argued to be a fair assumption. Subsequently,
the modeling would focus on the core part and the floating part with a long and short
maturity, respectively.

The most common, and perhaps also the most naive, approach to modeling non-maturing
deposits is to make static assumptions about the maturity of the deposit. By assigning
one maturity for every deposit, the clear benefit is simple cash flow analysis. However,
this can be problematic regardless of whether the assumed maturity is longer or shorter
than the actual maturity of the deposit. If the assumed maturity is longer than the real
maturity, the immediate risk is poor liquidity during a time of withdrawals, although the
deposits can be invested. On the other hand, if the assumed maturity is shorter than the
actual maturity, the deposits cannot be allocated in a productive way, although liquidity
is guaranteed in the case of withdrawals.

A clear improvement to this approach is to utilize the non-maturation theory and to split
the deposits into two parts with two different maturities. Subsequently, the maturity of
the floating part can be modeled using different empirical methods such as the outflow
rate method OeNB (2008) or using a replicating portfolio approach, where different fixed
income instruments are combined in order to artificially create similar cash flows as the
accounts. Combining different methods is also common, both for the stable part and
the volatile part. However, as all the aforementioned methods are deterministic, they do
not include any randomness. For this purpose, it is also possible to view the NMDs as
options and apply option-adjusted spread (OAS) models, where stochastic interest rate
term structures are modeled.

In addition to the prevailing interest rate environment as a major factor impacting NMDs,
the prevailing unemployment rate is also a factor to be taken into account. As stated
by Stavrén and Domin (2019), the unemployment rate is expected to have an inverted
correlation with respect to NMD volumes. This is theoretically justified as the mean
wealth decreases as a result of increased unemployment, subsequently leading to lower



NMD volumes. In their study, Stavrén and Domin (2019) found this relationship to be
statistically significant for both savings accounts and corporate savings accounts.

2.2 Segmentation

Customer segmentation is a way to categorize customers into smaller groups to provide
targeted services and assess the creditworthiness in banks. This segmentation is done
traditionally via demographic or economic criteria such as age or income (Machauer and
Morgner, 2001). The problem with this approach is that outliers do not behave as the
averages of their segment. More recently, account behavior has been used as part of cus-
tomers’ creditworthiness. These categorizations that have been done for other purposes
might give more appropriate approximations for interest rate-based prediction models,
or new segmentation might serve this purpose even better. Account activity is also an
indicator of how likely the funds are withdrawn — this is one of the features in the data
that S-Bank provides us.

2.3 Models

Different methods for forecasting non-maturing liabilities have also been developed and
studied in previous research. Ahmadi-Djam and Belfrage (2017) tested several time se-
ries models to determine whether they are are suited for modelling deposit volumes. The
tested models included a Holt-Winters model, a Stochastic Factor model, an ARIMA
model and an ARIMAX model, of which the ARIMAX model was found to be the most
suitable one. Using only daily data, the model was found to forecast accurately from 3
months up to 6 months.

One of the most commonly used methods to model non-maturity deposits was developed
by Jarrow and Van Deventer (1998). It is a one factor model that uses short rates
for forecasting future non-maturity levels. The shortcoming of this model in a negative
interest rate environment is that bank’s retail customers’ rates bottom boundaries are
capped to zero. This weakens the precision of the model Stavrén and Domin (2019).



3 Data & Methods
3.1 Data

The data that is used in this study consists of four separate files; each one with the same
layout and content, but for different types of accounts. More specifically, the four types
of data correspond to four different types of clients in order of importance to the bank.
Two are seen as very important: Al and A2, and two are seen as less important: B1 and
B2. Each dataset contains daily observations of the amount of money deposited to 5000
accounts ranging from January 2, 2015 to February 22, 2022. The daily sum of all 5000
accounts of the dataset Al is presented in Figure 1, and the daily sums of the respective
accounts in the other datasets are presented in Figure 17 in Appendix A.
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Figure 1: Daily total balance of the accounts in dataset Al.

As the data contains deposits from real people and wealth distributions are notoriously
skewed (Benhabib and Bisin, 2018), we expected extreme values in all datasets. Summary
statistics from the beginning and the end of the period of the Al dataset are presented
in Table 1 below:

Start of the period End of the period

Mean 1783.59 3589.16
Median 201.99 400.1
Std Dev 7375.3 14067.69

Minimum —146.57 —39.76

Maximum 242585.48 432305.94
Skewness 14.41 12.28
Kurtosis 330.92 245.04

Table 1: Summary statistics of the data in the Al dataset

As can be seen from Table 1 above, the data is extremely skewed positively and leptokur-
tic. This means that the data is unevenly distributed which is caused by the mean being
significantly larger than the median. Furthermore, the data contains negative values due
to irregular spending by some accounts. Moreover, the share of accounts that have had



at some point a negative balance is high, roughly 42.3%. The summary statistics of the
other datasets are presented in Tables 31, 32, and 33 in Appendix B. In Figure 2, we show
the performance comparison of the four datasets, we mentioned earlier. Specifically, the
plot displays the scaled version of monthly total balance of each segment. In addition,
we added the corresponding data from Bank of Finland (SP) which consist data of the
total deposits of all Finnish working households. The total balances are scaled with the
respect to its first total balance value and thus makes the comparison valid.
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Figure 2: Performances of total balances of the datasets and Bank of Finland (SP).

Figure 2 shows the segments Al and A2 are very important and the main NMD holding
capitals comes from them in the perspective of S-Bank. The total deposit of Bank of
Finland seems to underperform compared to the segments. This is simply because the
total deposits of the segments of S-Bank are fraction of the sizes of the total deposits of
the Bank of Finland.

3.1.1 How Covid-19 Affected the Data

As we can see in Table 2, there were significant changes in the variance of the total
NMD balance within every segment. January 29th 2020 was used as the beginning date
of COVID-19 in the context of this project, because the first infection in Finland was
diagnosed on that day. The variance within segment A1 has increased by a factor of 1.74.
This means that the uncertainty of the segment has grown to be 1.74 times larger after
COVID-19 started, compared to the uncertainty level before COVID-19. For all other
segments, the variance for the time after COVID-19 started is smaller than the variance
before said time. This can be interpreted as the uncertainty of these segments decreasing,
which seems counter-intuitive. The reason for this is unclear.

Segment Variance pre-covid Variance post-covid %
Al 73 479 529.31 128 009 810.71 1.74
A2 2 089 594 571 865.98 | 1 461 989 452 614.01 0.70
B1 268 036 278 812.63 124 882 605 604.41 0.47
B2 52 956 732 963.65 21 454 011 423.96 0.41

Table 2: The variances of the daily total NMD balances between different segments, pre-
covid and post-covid



3.2 Segmentation

In order to improve the accuracy of our model, we first divide our data into different
data sets based on S-Banks’s own segments, use a clustering algorithm to divide the data
further and then fit the model for each of these segments separately. After this, we sum
each of the segmentation based predictions.

We are testing four different segmentation algorithms in this project. The goal is to
divide accounts into groups based on the account behaviour. Thus, we are selecting the
segmentation algorithm that creates groups that differ the most from the original data
set on average based on mean squared error, MSE. The difference measure:

Z MSE(a(d) — k(s,d)) x S(s)
ses > aep ald) x S(d) ’

where S is the set of segments, D is the set of days, S(s) is the size of the segment s,
S(d) is the size of the data set, a(d) is the account balance at day d and k(s,d) is the
average account balance of a segment s at day d.

3.2.1 Density-based Spatial Clustering of Applications with Noise

Density-based Spatial Clustering of Applications with Noise, also known as DBSCAN,
is a popular data clustering method where given a set of observation points in some
specific area, it segments together the points that are close to each other based on a
distance with some minimum number of points in this area. Hence, why the method is
called density-based. Generally it is measured with Euclidean distance. DBSCAN only
requires 2 parameters. First parameter is epsilon which is the maximum distance between
some two points to be considered neighbors or in a same segment. Second parameter is
minPoints which is the minimum number of points to form a dense area. For example,
for minPoints = 5, if there are five points or more within the epsilon distance of each
other, then it is called its own separate segment. We received the following difference
measures when performing DBSCAN with parameters epsilon = 0.5 and minPoints =
100 on four different datasets:

Table 3

Al A2 B1 B2
Difference measure || 2078.71 | 1241.76 | 621.03 | 116.99

After performing DBSCAN clustering on the existing data, we concluded that this clus-
tering method was not suitable for day-to-day NMD balance data when the balance can
stay the same for weeks when the customer does not withdraw or deposit cash in it for a
while. This makes DBSCAN very non-robust for the analysis of short periods when the
variation of data is not spread enough.

3.2.2 K-means clustering

K-means algorithm divides the data into a given number of clusters, k, by minimizing

the means of these groups.
k
arg minz Z (z — wi)*
i=1 xz€S;
At the first iteration the algorithm gives the data k arbitrary selected means p;, 7 €
[1,..,k]. Each data sample is assigned to the group with nearest mean. New means are



then calculated for each of these groups and each sample is again assigned to the group
with nearest mean. This process is continued until the iterations do not alter the groups
anymore. If the algorithm does not converge, it is stopped when given number of itera-
tion is reached. K-means method is the most widely used centroid-based segmentation
algorithm. The standardized algorithm was published by Lloyd (1982).

For data sets B1 and B2, the K-means clustering provided the best results. Thus, we are
testing how it performs with our model. The difference measures we received with this
method and seven clusters were:

Table 4

Al A2 B1 B2
Difference measure || 3378.47 | 2705.08 | 1214.21 | 629.51

3.3 Gaussian Mixture

Similar to the K-means clustering, the Gaussian Mixture Model (GMM) divides the data
into predefined number of clusters. However, Gaussian Mixture Model performs the divi-
sion based on an assumption that all the data points are generated with some number of
Gaussian distributions. The segments maximize the likelihood that these are generated
by the same set of these distributions.

Gaussian mixture clustering provided us the best results for data set A2 based on our
experiments. Thus, we are testing how it performs with our model. The difference
measures of the Gaussian mixture with seven clusters were:

Table 5

Al A2 B1 B2
Difference measure || 3713.95 | 2779.52 | 1200.6 | 494.16

3.4 Affinity Propagation

Affinity Propagation does not take the number of clusters as an input like the previous
two. The algorithm first picks an arbitrary number of samples from the data set as exem-
plars and then calculates how similar the samples that have not been picked are to these
exemplars. Each of these remaining samples are assigned to the exemplar to maximize
the total similarity. The set of exemplars and to which examplar the remaining samples
are assigned is updated at each iteration until the algorithm converges.

Affinity propagation had problems finding a reasonable number of clusters in our data set.
When dividing the 5000 accounts from data set Al into segments, it found 166 different
segments. Computationally, this would not have been an issue with our data sample, but
S-Banks 3,1 million customers could create issues. For data sets Al, Bl, and B2, the
algorithm did not converge. The difference measures for Affinity propagation were:

Table 6

Al A2 B1 B2

Difference measure || 4797.58 | Did not converge | Did not converge | Did not converge

10
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Figure 3: Results of Gaussian Mixture segmentation on data set Al.

3.5 Forecasting Models

The Jarrow and Van Denventer model can be used to forecast non-maturity deposits based
on the relationship between deposit rates, d, and interest rate levels, r. The interest rates
are predicted with, for example, Vasicek-model or ARMA(1,1). The total deposits from
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time 0 to ¢ can be estimated with the following formula:

t—1

dy = do + Pot + B1 Zrt—i + Ba(ry — 10),

1=0

where the coefficients 3y, 81, 83 are obtained by minimizing the estimation error over the
training period. Since the retail customers can not have negative interest rates in their
accounts, we alter this model as:

t—1

dy = do + Bot + B Zmaw(r, i,0) + B2(maz(r,, 0) — maz(rg,0)).

=0

There are only 55 one month interest rate observations and predictions that are positive
in our time data set. Those are in the beginning of year 2015. For this reason, this model
shrinks down to d; = dy+ Bot. Thus, we are not expecting this model to be very accurate.

ARMA (Autoregressive Moving Average) models are used for statistical analysis of time
series. ARMA models have two orders - one of the autoregressive part and one for the
moving average part. ARMA models are usually denoted as ARMA(p, q), where p is the
order for the autoregression and q is the order for the moving average. Mathematically,
an ARMA(p,q) model is denoted as follows:

P q
Xi=e+ ) ¢0:iXei+ D bier_i+c,
i=1 =1

where X, is the predicted quantity at the moment of time ¢, ¢, is the error in the predic-
tion, ¢;.., are the autoregression coefficients, 6. 4, are the moving average coefficients,
€¢—1...t—q are the error terms for the past predictions and c is a constant.

ARMA models are fitted by using least squares regression to minimize the error term
in order to find the correct coefficients ¢;. , and 6, ,. SARIMAX (Seasonal AutoRe-
gressive Integrated Moving Average with eXogenous regressors) models are quite similar
to ARMA models, but they account for seasonality in the time series, as well as take
into account an exogenous variable in order to describe the time series better. A SARI-
MAX(p,d,q)(P,D,Q,s) model is denoted as follows:

P q r P Q
Xi=e+ ) 6: Xy i+ > 0 i+ ) Bixi, + 3 Xy i+ Y pi€ s+,
i=1 i=1 i=1 i=1 i=1

where d is the integration order, P is the autoregressive order for the seasonal compo-
nent, D is the seasonal integration order, @) is the moving average order for the seasonal
component, s is the season length, z;, is the exogenous variable at time ¢, 8;.., are the
coefficients for the exogenous variable values, . p are the autoregressive coefficients for
the seasonal component, X, _,; are the past variable values offset by the season length,
p1...q are the moving average constants for the seasonal component and €;_; are the error
terms for the past predictions offset by the season length.

The modelling was begun by first considering multiple ARMA models to fit the time se-
ries formed by the sum of account balances for each day. The fitted models were MA(1),
ARMA(1,1), ARMA(1,2), ARMA(2,1) and ARMA(2,2). These models were first used to
build the modelling functionality, not for actual predictions so the results provided by
said models will not be discussed in depth. The MA(1) model gave the most pessimistic
predictions, i.e. the lowest values, and the ARMA(2,1) model gave the most optimistic

12



predictions. After fitting the ARMA models, an interest rate data set for years 2015-2022
was formed from multiple smaller 6 month data sets. The data set contains daily val-
ues for 1 week, 1 month, 3 month, 6 month and 12 month Euribor rates. Utilizing this
data set, the ARMAX models were fitted using different Euribor rates as an exogenous
variable. A separate ARMAX(1,1) model was created for each Euribor rate. Further
discussion with the client had to be had to determine the most sensible interest rate to
use in the modelling, and it was determined that the 3 month and 12 month Euribor
rates were the most sensible. The Euribor rates were used to build the functionality of
the ARMAX models since there was daily interest rate data available on them, and the
results provided by the ARMAX models will not be discussed.

After fitting these simple models, the Bayesian information criterion (BIC) was calculated
for every ARMA model from ARMA(1,1) to ARMA(10,10) in order to find the model
that has the best balance between fitting the data and complexity. The lower the BIC, the
better the model is in terms of finding this balance. The Bayesian information criterion
is

BIC = k In(n) — 2,

where k is the number of parameters in the model, n is the number of samples used to fit
the model and [ is the maximized value of the log-likelihood function of the model.

The best ARMA model in terms of the BIC was ARMA(7,9). However, this model was
deemed too complex in the modelling phase, and it was opted to use ARMA(3,3) instead,
as it was simple enough and minimized the BIC when the orders were limited to be at
most 3. Table 7 shows that the variations between the BIC values of different models
were quite small. The table contains the quartiles of BIC values calculated for every
model from ARMA(1,1) to ARMA(10,10). Thus the table is constructed based on the
BIC values of 100 ARMA models. From the perspective of BIC, the model selection from
the available models was quite inconsequential.

Percentile value
0 72 830.79
25 73 094.55
50 73 195.95
75 73 248.89
100 73 619.99

Table 7: Quartiles of the BIC values, ARMA(1,1) to ARMA(10,10)

The parameters of the SARIMAX model were selected in a similar way as the parameters
of the ARMA model, the main difference being that the season length, integration order
and seasonal integration order had to be determined first. The season length used in this
project is 14 days, and the selection was performed using intuitive knowledge of customer
behaviour supported by observations based on the autocorrelation function 4b and the
partial autocorrelation function 4a of the stationarised time series. The integration order
d was set to 1 and seasonal integration order D was set to 0, as a single non-seasonal
differencing was sufficient to make the time series stationary.

The remaining parameters for the SARIMAX model, the seasonal and non-seasonal au-

toregressive and moving-average orders p, ¢, P and @), were determined by calculating
the BIC of every possible model with the aforementioned parameters ranging from 0 to
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2, resulting in 81 tested models in total. The number of tested models was limited by
the testing process being computationally heavy and time-consuming. The model that
yielded the lowest BIC was SARIMAX(0,1,1)(2,0,0,14), which was then selected for fore-
casting.
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(a) Partial autocorrelation of the differ- (b) Autocorrelation of the differenced Al
enced Al series series

Linear regression was also used to model the relationship between the total NMD balance
and the interest rates. The 3 month Euribor rate was first used to perform the regression,
as our client deemed this to be one of the most prominent interest rates to use in the
modelling, alongside the 12 month Euribor rate. Later, the regression was performed
using every Euribor rate separately.

Linear regression is a linear method for modelling the relationship between one or more
explanatory variables and one dependent variable. The used regression method was linear
least-squares regression, which means that the sum of squared errors between the fitted
and actual values is minimized. Mathematically, the regression equation is

Yi = Bo + bz,

where By is a constant 3, is the constant for the interest rate and z is the interest rate .

From Figure 5 we can see the regression line for the 3 month Euribor rate, and its
relationship to the scattered data points. We observe a downwards trend. We also ob-
serve, that the data points are mostly above the regression line on the left side of the
plot, then below the regression line approximately when the interest rate is from -0.3 %
to -0.1 %, and then above the regression line again after that. From Table 8 we can see
the statistics of the regression. The slope was -12 198 989.20, which indicates that the
total NMD balance will decrease by the said amount when the interest rate increases by
one percentage point. The y-intercept is 5 442 722.35, which implies that the total NMD
balance would be that amount when the interest rate is 0 %. The |R?| value is 0.85,
which means that 85 % of the variability of the total NMD balance is explained with the
3 month Euribor rate. The minus sign indicates that the relationship is negative. The
p-value of 0 implies that there is no chance that there is no actual relationship between
the total NMD balance and the 3 month Euribor rate, and thus the 3 month Euribor rate
can be declared to be a statistically significant variable in the regression.

The regression statistics for the linear models using the other Euribor rates as an explana-

tory variable are in Table 8. The absolute value of the slope decreases when moving from
shorter term Euribor rates to longer term Euribor rates. Alternatively, the y-intercept
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grows in magnitude, so the longer term the Euribor rate, the more optimistic the pre-
dicted value of the total NMD balance is when the interest rate is at 0 %. The difference
between the best and worst R? value is four percentage points. The 12 month Euribor
rate explains 88 %, and the 6 month Euribor rate 87 % of the variability in the total
NMD balance, and thus it seems that the longer term Euribor rates do a slightly better
job in explaining the aforementioned variability.

Even though linear regression seems to fit the data well, there is a problem. From Table
9 we can see the predicted total NMD balances for interest rates 0...0.5 %. As we can
see from the table, the predicted NMD balance turns negative when the 1 month Euribor
rate is somewhere between 0.3...0.4 %. The problem arises due to the used data being
so monotonic. The interest rates have been low, and even negative for the whole time
period the data was obtained from. From Figure 6 we can see that the variation range for
each of the Euribor rates is under one percentage point. As mentioned, the data is simply
too monotonous for the linear regression to have predictive power when the interest rates
change into larger positive numbers. Thus, the linear regression approach is documented,
but will not be pursued further.
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Figure 5: Linear regression using the 3 month Euribor
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Figure 6: A visual representation of the variation of the Euribor rates.

Interest rate Slope y-intercept R? | p-value | Standard error
1 week Euribor -13 675 273.28 | 4 056 118.05 | -0.85 0 181 933.91
1 month Euribor || -12 825 006.28 | 4 629 308.00 | -0.84 0 179 939.18
3 month Euribor || -12 198 989.20 | 5 442 722.35 | -0.85 0 162 857.55
6 month Euribor || -11 089 127.57 | 6 481 854.00 | -0.87 0 124 017.64
12 month Euribor || -9 687 983.60 | 7 745 787.60 | -0.88 0 112 788.48

Table 8: Descriptive data of the regression models.

1 month Euribor (%) || Predicted NMD balance (€)
0 4 629 309.00
0.1 3 346 808.37
0.2 2 064 307.74
0.3 781 807.12
0.4 -500 693.51
0.5 -1 783 194.14

Table 9: Predicted total NMD balances using linear regression, 1 month Euribor

3.6 Segments Application on the Forecasting Models

In the final model, we combine the best performing segmentation algorithm and forecast-
ing model. The forecasting model is fitted for each segment’s training data separately
and then it counts the result as a sum of each of these NMD predictions. The pseudo
code of this process is as follows:
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Algorithm 1 Segmentation Based Forecasting Model

Input: prediction length PL, number of segments k, training data D
Output: prediction P
P[]
use k-means to the data D and add a column to D indicating the segment
for data segment i in D do
S < time series of summed daily account balances in segment i
M < model obtained by fitting time series model to S
P < P + predictions the model M gives for days PL
end for
return P
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4 Results

The results we compared are obtained by creating predictions for 90 day intervals with
selected models. For each prediction, the model parameters are fitted based on training
data of 365 days prior to the predictions. The results are analyzed by 30 day interval
averages as well as the total 90 day interval. We focus on the Mean Absolute Percentage
Error (MAPE) and the standard deviation of the error terms.

The results presented in this section include baseline results using the Jarrow and Van
Deventer model as well results using an ARMAX(1,0,1) model, an ARMA(3,3) model
and a SARIMAX(0,1,1)(2,0,0,14) model. Furthermore, the results of each model with the
exception of the Jarrow and Van Deventer model are presented without segmentation,
with K-means segmentation and with Gaussian Mixture segmentation. The number of
parameters for each model was determined using the Bayesian Information Criterion.

4.1 Jarrow and Van Deventer

In this project, the Jarrow and Van Deventer model was used to benchmark our other
models. We did not expect this model to perform well in test settings during a negative
interest rate environment. The restriction that interest rates cannot be negative makes
the model simple and linear and thus the accuracy seems to decline when predicting
further. The mean absolute percentage errors for each data set are presented in Table 10
and summary statistics of the standardized residuals are presented in Table 11.

Table 10

Al | A2 | Bl | B2
MAPE - total || 2.304 | 6.134 | 2.066 | 1.652
MAPE - [0-30] | 2.145 | 5.756 | 2.597 | 1.096

MAPE - [30-60] || 2.274 | 6.251 | 1.896 | 1.689

MAPE - [60-90] || 2.493 | 6.395 | 1.704 | 2.170

Table 11
Al A2 B1 B2
mean || -1.85e-16 | -1.53e-15 1.49¢e-16 -6.20e-16
min -3.63 -3.16 -3.63 -4.55

25 % || -6.33e-01 | -5.78¢e-01 | -5.269e-01 | -3.95e-01
50 % || 2.02e-02 | 2.87e-02 | 7.677e-02 | 6.33e-02
75 % || 6.88e-01 | 6.23e-01 | 5.942e-01 | 5.23e-01
max 3.35 3.34 4.455 5.72

Distributions of the standardized residuals are shown in Figure 7. From the distributions
we can see that the residuals are seemingly more normally distributed for datasets Al
and A2 than for B1 and B2, indicating that the Jarrow and Van Deventer model is better
suited for forecasting using datasets Al and A2.
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Figure 7: Plotted standardized residuals for all data sets using the Jarrow and Van
Deventer model.

4.2 ARMAX(1,0,1) with 1-month Euribor

In this subsection the results of the ARMAX(1,0,1)-models with the 1-month Euribor
rate as an exogenous variable are presented. First the results without segmentation are
presented, then the results with K-means clustering are presented and lastly the results
with Gaussian Mixture Segmentation are presented.

4.2.1 ARMAX(1,0,1) without Segmentation

The ARMAX(1,0,1) model without segmentation is clearly the least suited for forecasting
as indicated by the high MAPE shown in Table 12. Furthermore, by examining the
distribution of standardized residuals in Table 13 and Figure 8 it is clear that the residuals
are more dispersed than for the distributions resulting from the Jarrow and van Deveter
model.
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Table 12

Al A2 B1 B2
MAPE - total 3.274 | 27.195 | 14.308 | 15.811
MAPE - [0-30] || 3.205 | 27.200 | 13.906 | 15.671

MAPE - [30-60] || 3.349 | 27.262 | 14.100 | 15.692

MAPE - [60-90] || 3.269 | 27.124 | 14.919 | 16.071

Table 13
Al A2 B1 B2
mean || -2.21e-16 | 1.45e-15 | 7.17e-16 | -2.50e-16
min -5.63 -4.79 -4.29 -3.84

25 % || -1.03e-01 | -4.94e-01 | -1.87e-01 -2.33
50 % || 1.63e-02 | -3.69e-01 | -1.47e-01 -2.17
75 % || 1.18-e01 | 6.33e-01 | 5.69e-02 -1.27
max 5.63 3.82 3.99 3.39
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Figure 8: Plotted standardized residuals for all data sets for the ARMAX(1,0,1) model
without segmentation.

20



4.2.2 ARMAX(1,0,1) with K-means Segmentation

The mean average percentage errors of the ARMAX(1,0,1) model with K-means segmen-
tation are presented in Table 14 and descriptive statistics of the standardized residuals
are presented in Table 15. A visual representation of the residuals is shown in Figure 9.

Table 14
Al A2 B1 B2
MAPE - total 1.567 | 15.755 | 11.807 | 15.695
MAPE - [0-30] 1.703 | 15.747 | 11.807 | 15.689
MAPE - [30-60] || 1.548 | 15.826 | 11.936 | 15.618
MAPE - [60-90] || 1.449 | 15.693 | 11.676 | 15.776
Table 15
Al A2 B1 B2
mean || -2.71e-16 | -7.04e-16 | 2.0le-16 | 6.26e-17
min -8.73 -4.00 -4.15 -3.14
25 % -2.36 -4.50e-01 | -2.81e-01 | -4.94e-01
50 % 4.07 -3.00e-01 | 2.27e-01 | -4.67e-01
75 % 2.07 3.17e-01 | 3.09e-01 | -6.79e-02
max 9.07 3.34 4.63 2.90
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Figure 9: Plotted standardized residuals for different data sets for the ARMAX(1,0,1)
model with K-means segmentation.

From the results presented above it is clear that the K-means segmentation improved
the forecasting accuracy, however, the JVD model that was used as a baseline still shows
more accurate forecasts.

4.2.3 ARMAX(1,0,1) with Gaussian Mixture Segmentation

Lastly, the results of the ARMAX(1,0,1) model with Gaussian Mixture Segmentation
are presented in this section. The MAPE of the model presented in Table 16 indicates
that this model is slightly less suitable for forecasting than the model using K-means
segmentation. However, based on the distribution of residuals presented in Table 17 and

Figure 10, the distribution is less disperse. Nonetheless, this model is also clearly worse
than the JVD model.

Table 16

Al A2 Bl B2
MAPE - total || 1.565 | 16.888 | 12.848 | 17.467
MAPE - [0-30] || 1.484 | 16.534 | 12.847 | 17.424

MAPE - [30-60] || 1.585 | 16.734 | 12.949 | 17.490

MAPE - [60-90] || 1.625 | 17.397 | 12.748 | 17.489
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Table 17

Al A2 B1 B2
mean || -2.03e-16 | -4.20e-16 | 7.63e-16 | 2.44e-16
min -6.46 -4.58 -3.71 -4.97
25 % || -1.41e-01 | -3.27e-01 -3.48 -1.63e-01

50 % 5.97e-02 | -2.56e-01 | -2.91e-01 -1.45
75 % 1.97e-01 | 2.36e-01 | 1.44e-01 | -2.79e-02
max 5.10 4.15 3.88 2.10

1750

1500

050

o0

=0

=0

1750

1500

950

1000

=0

wo

Figure 10: Plotted standardized residuals for all data sets using the ARMAX(1,0,1) model
with GMM segmentation.

4.3

In this section the results using an ARMA(3,3) model are presented. Here too, the results
are presented first when no segmentation was conducted, then with K-means segmenta-
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tion and lastly, with Gaussian Mixture segmentation.
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4.3.1 ARMA(3,3) without Segmentation

The MAPE of the ARMA (3,3) model are presented in Table 18 below. Comparing these
values with the MAPE of the JVD model in Table 10 it is clear that the out-of-sample
prediction error is significantly smaller using the ARMA(3,3) model for every data set.
However, by examining the distribution of residuals in Table 19 and Figure 11 we can see
that despite the prediction error being smaller, the residuals are more dispersed.

Table 18

Al A2 B1 B2
MAPE - total 0.882 | 1.954 | 0.517 | 0.482
MAPE - [0-30] || 0.888 | 1.970 | 0.519 | 0.416

MAPE - [30-60] || 0.879 | 1.940 | 0.500 | 0.482

MAPE - [60-90] || 0.879 | 1.953 | 0.532 | 0.548

Table 19
Al A2 B1 B2
mean || -4.42e-16 | 4.74e-16 6.54e-16 | -3.57e-16
min -3.79 -3.75 -8.32 -9.43

25 % || 5.00e-01 | -4.63e-01 | -4.54e-01 | -2.44e-01
50 % || -1.26e-01 | -1.34e-01 | -6.73e-02 | -7.57e-02
75 % || 3.03e-01 | 2.59e-01 | 3.52e-01 | 1.53e-01
max 5.83 7.72 1.07e+01 | 1.07e+01
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Figure 11: Plotted standardized residuals for all data sets using the ARMA(3,3) model
without segmentation.

4.3.2 ARMA(3,3) with K-Means Segmentation

Using the ARMA(3,3) model with K-means segmentation resulted in slightly better out-
of-sample performance than without segmentation as shown in Table 20. Nonetheless,
the residuals are dispersed with this model as shown in Table 21 as well and moreover,
for data sets A1 and A2 the distribution of residuals is clearly skewed as shown in Figure

12.

Table 20
Al A2 B1 B2
MAPE - total 0.802 | 1.834 | 0.529 | 0.449
MAPE - [0-30] 0.807 | 1.831 | 0.509 | 0.362
MAPE - [30-60] || 0.804 | 1.838 | 0.510 | 0.448
MAPE - [60-90] || 0.796 | 1.833 | 0.567 | 0.537
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Table 21

Al A2 B1 B2
mean || -5.32e-18 | -4.00e-16 | 7.63e-17 | -2.60e-16
min -3.88 -3.34 -6.66 -1.02e+01
25 % || -3.89e-01 | -3.91e-01 | -4.65e-01 | -2.72¢-01
50 % || -7.98e-02 | -9.00e-02 | -6.17e-02 | -6.70e-02
75 % || 2.13e-01 | 1.94e-02 | 3.85e-01 2.01e-01
max 6.00 7.75 1.09e+01 | 1.14e+01
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Figure 12: Plotted standardized residuals for all data sets using the ARMA(3,3) model
with K-means segmentation.

4.3.3 ARMA(3,3) with Gaussian Mixture Segmentation

In the last subsection the results of the ARMA(3,3) model with Gaussian Mixture seg-
mentation are presented. By comparing the MAPE in Table 20 with the MAPE in 22 no
conclusive difference is indicated with the exception of data set B2, for which the model
using GMM seems more suitable. However, by examining the residuals in Table 23 and
Figure 13, it is clear that no significant change is seen in the behaviour of the residuals.
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Table 22

Al A2 B1 B2
MAPE - total 0.804 | 1.833 | 0.559 | 0.377
MAPE - [0-30] | 0.801 | 1.835 | 0.516 | 0.323

MAPE - [30-60] || 0.806 | 1.830 | 0.527 | 0.370

MAPE - [60-90] || 0.805 | 1.834 | 0.634 | 0.439

Table 23
Al A2 B1 B2
mean || 5.31e-17 | -2.72e-16 | -1.36e-16 | -5.51e-16
min -3.82 -3.13 -5.32 -1.17e+01

25 % || -3.90e-01 | -4.05e-01 | -4.89e-01 | -2.75¢-01
50 % || -7.90e-02 | -9.38¢-02 | -5.88e-02 | -7.85¢-02
75 % || 2.09¢-01 | 2.04e-01 | 3.95e-01 1.88e-01

max 5.88 7.57 1.09e+01 | 1.31e+01
(a) Segment Al (b) Segment A2
(c) Segment B1 (d) Segment B2

Figure 13: Plotted standardized residuals for all data sets using the ARMA(3,3) model
with GMM segmentation.
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4.4 SARIMAX(0,1,1)(2,0,0,14)

In this section the results using a SARIMAX(0,1,1)(2,0,0,14) model are presented. Sim-
ilarly to the previous subsections, the results are presented first when no segmentation
was conducted, then with K-means segmentation and lastly, with Gaussian Mixture seg-

mentation.

4.4.1 SARIMAX(0,1,1)(2,0,0,14) without Segmentation

The MAPE of the SARIMAX(0,1,1) model without segmentation are presented in Table
24 below. By comparing these values with the MAPE of the previous models it is evident
that the out-of-sample prediction error is significantly smaller using the SARIMAX(0,1,1)
model. However, as with the previous autoregressive models the distribution of residu-
als presented in Table 25 and Figure 14 are more dispersed and more skewed than the

residuals of the JVD model.

Table 24
Al A2 B1 B2
MAPE - total 0.750 | 1.680 | 0.370 | 0.144
MAPE - [0-30] 0.751 | 1.689 | 0.375 | 0.144
MAPE - [30-60] || 0.751 | 1.674 | 0.366 | 0.145
MAPE - [60-90] || 0.749 | 1.676 | 0.369 | 0.144
Table 25
Al A2 B1 B2
mean | 3.70e-17 | -8.74e-18 | 1.19e-16 1.15e-17
min -3.98 -3.81 -9.97 -1.84e+01
25 % || -3.55e-01 | -3.47e-01 | -3.35e-01 | -2.04e-01
50 % || -2.21e-02 | -8.60e-03 | -4.47e-02 | -6.45e-02
75 % 9.04e-02 | 5.56e-02 | 1.24e-01 | -3.96e-02
max 6.13 7.61 1.27e+01 | 1.94e+01
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Figure 14: Plotted standardized residuals for all data sets using the SARIMAX(0,1,1)

model without segmentation.

4.4.2 SARIMAX(0,1,1)(2,0,0,14) with K-Means Segmentation

Using K-means segmentation did not significantly improve the prediction accuracy using
the SARIMAX model as indicated by the values in Table 26 and the residuals in Table

27 and Figure 15.

Table 26
Al A2 B1 B2
MAPE - total 0.755 | 1.678 | 0.361 | 0.146
MAPE - [0-30] 0.756 | 1.684 | 0.366 | 0.147
MAPE - [30-60] || 0.755 | 1.675 | 0.359 | 0.147
MAPE - [60-90] || 0.753 | 1.675 | 0.357 | 0.144
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Figure 15: Plotted standardized residuals for all data sets using the SARIMAX(0,1,1)
model and K-means segmentation.

Table 27

Al A2 B1 B2
mean || -2.17e-17 | 1.93e-17 | -1.85e-18 | 2.31e-18
min -3.93 -3.90 -6.66 -1.86e+01
25 % || -3.61e-01 | -3.37e-01 | -3.41e-01 | -2.08e-01
50 % || -2.55e-02 | -1.37e-02 | -4.52¢-02 | -6.71le-02
75 % 9.53e-02 | 4.98¢-02 | 1.12e-01 | -3.85e-02
max 5.97 7.76 1.30e+01 | 1.95e+01
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4.4.3 SARIMAX(0,1,1)(2,0,0,14) with Gaussian Mixture Segmentation

Similarly to using K-means segmentation, using Gaussian Mixture segmentation did not
improve either the prediction accuracy using the SARIMAX model as indicated by the

values in Table 28 and the residuals in Table 29 and Figure 16.
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Table 28

Al A2 B1 B2
MAPE - total 0.750 | 1.678 | 0.358 | 0.145
MAPE - [0-30] | 0.750 | 1.683 | 0.365 | 0.145

MAPE - [30-60] || 0.752 | 1.675 | 0.356 | 0.146

MAPE - [60-90] || 0.747 | 1.677 | 0.353 | 0.144

Table 29
Al A2 B1 B2
mean || -2.65e-17 | 1.43e-18 | -6.34e-19 | 3.98e-18
min -3.98 -3.87 -6.49 -1.85e+01

25 % || -3.74e-01 | -3.48e-01 | -3.55e-01 | -2.07e-01
50 % || -2.36e-02 | -1.27e-02 | -4.65e-02 | -6.80e-02
75 % || 8.20e-02 | 5.46e-02 | 1.17e-01 | -3.85¢-02
max 5.94 7.74 1.30e+01 | 1.94e+01
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Figure 16: Plotted standardized residuals for all data sets using the SARIMAX(0,1,1)
model and GMM.
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5 Discussion

5.1 Reflection on Literature

Due to the effects of negative interest rates, the Jarrow and Van Deventer model was not
ideal for predicting the behavior of non-maturity deposits. Stavrén and Domin (2019)
obtained the same results. This method is inaccurate when used with the period used in
this research but to study how much the accuracy drops when interest rates turn negative,
a longer data sample would be needed.

Ahmadi-Djam and Belfrage (2017) considered an ARIMAX to be the best model to fore-
cast non-maturity deposits. In this project, the SARIMAX model was deemed the best.
The apparent reason that the SARIMAX did not fit well for Ahmadi-Djam and Belfrage
(2017) was that the data set they used did not have information about the weekends and
holidays. This also causes issues with fitting seasonality and predicting the results at
one-day intervals. For this reason, we can not compare the accuracies directly. Further-
more, the segmentation used in their experiment was based on customer attributes and
was not based on account behavior. For this reason, the segmentation did not increase
the accuracy. In this research, the segmentation was done based on S-Bank’s own criteria,
and then these segments were split further using segmentation algorithms. This increased
the predictive power for our models, disregarding SARIMAX. Parameters for the final
SARIMAX were optimized based on the whole data set. The comparison between opti-
mized SARIMAX and SARIMAX where the parameters are optimized for each cluster
separately could be conducted for further research.

The settings in research by Stavrén and Domin (2019) also differ from ours. The models
compared in said research used only monthly aggregated data observing the volumes.
Also, this aggregate data is from Sweden. In their research, unlike in the research con-
ducted by the Ahmadi-Djam and Belfrage (2017), SARIMA model was deemed to be
the best model for modeling non-maturity deposits, and the exogenous variable did not
increase the accuracy notably.

5.2 Assessment of the Results

The results obtained in this study clearly indicate that using the SARIMAX(0,1,1)(2,0,0,14)
model both with and without segmentation provides the best forecasting accuracy out of
any of the models tested. Although segmentation clearly improves the forecasting accu-
racy when the ARMAX and ARMA models are used, no improvement is seen with the
SARIMAX model. The total MAPE of every model for each data set are presented in
Table 30 where the best overall models have been bolded.
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Data set
m Al A2 Bl B2

JVD (baseline) 2.304 6.134  2.066  1.652
ARMAX(1,0,1) 3274 27.195 14.308 15.811
ARMAX(1,0,1) K-means 1567 15.755 11.807 15.695
ARMAX(1,0,1) GMM 1.565 16.888 12.848 17.467
ARMA(3,3) 0882 1.954 0.517  0.482
ARMA (3,3) K-means 0.802 1.834 0.529  0.449
ARMA(3,3) GMM 0.804 1.833  0.559  0.377
SARIMAX(0,1,1) 0.750 1.680 0.370  0.144

SARIMAX(0,1,1) K-means 0.755 1.678 0.361  0.146
SARIMAX(0,1,1) GMM 0.750 1.678  0.358  0.145

Table 30: The total MAPE of every model for each data set.

The total values are computed using the entire 90-day forecast for each forecast period.
As the rolling window method was used by rolling one month forward, a total of 71 pe-
riods were used, which translates to 6390 observations in total. By examining the table
above we can clearly distinguish that the ARMAX(1,0,1) model has the lowest predictive
power both with and without segmentation. It is noteworthy that the MAPE decreases
significantly for data sets A1, A2, and B1, although it slightly increases for data set B2.
The ARMAX(1,0,1) model is the only model with less overall predictive power than the
Jarrow and Van Deventer model that was used as a baseline, as can be seen by the fact
that it only has a lower MAPE for data set A1 when segmentation is used.

Unlike the ARMAX(1,0,1) model, the predictive power of the ARMA(3,3) model is ev-
idently higher than the predictive power of the JVD model. Moreover, for the more
important data sets Al and A2 segmentation seems to improve the predictive power
roughly 10% as indicated by the values in Table 30, and for data set B2 it seems to
slightly improve the predictive power. Interestingly, using the ARMA(3,3) model with
either segmentation seems to yield the most accurate forecasts for the third month for
data sets Al and A2, as can be seen by comparing Tables 18, 20 and 22.

The overall best model is clearly the SARIMAX(0,1,1) model. The predictive power of
all three versions was significantly better for every data set compared to any of the other
models. To distinguish between the different SARIMAX models, despite only a slight
improvement compared to the other two models the SARIMAX model using Gaussian
Mixture segmentation proved to be the best overall model in terms of predictive power.
As stated earlier, segmentation did not improve the predictive power to the same degree
as it did with the other two models. As the first model also included the Euribor rate as
an exogenous variable, it is unlikely that this behaviour stems from that. Therefore, the
difference could be a result from either the ARMA (3,3) model being of a higher order or
from the seasonality in the SARIMAX models.

Although the number of observations used in the MAPE computation was high and thus,
the results credible, the underlying data causes some uncertainty. This is most evident
by examining the distributions of the standardized residuals of the models. As can be
seen from Figures 8 through 16, the majority of the histograms present both significant
kurtosis and skewness as the right side tails are wider than the left side tails, whereas the
left side tails are fatter than the right side tails. This indicates that outliers are present
which the forecast is not able model properly. By cleaning the data using, for example,
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winsorization, the models could possibly show more accurate forecasts and the residuals
could behave more coherently. Furthermore, as the autocorrelations of the residuals was
not examined the models still leave room for improvement.
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6 Conclusions

Non-maturity deposits are an essential part of banks’ funds, and thus it is vital to under-
stand their behavior well. These balances have seasonality and drift that can be modeled
with different time series models. The most commonly used and most prominent exoge-
nous parameter in these models has been the short interest rate due to its effect on the
investment market’s opportunity cost. However, the prediction power of this variable has
decreased with negative interest rates.

The main objective of this project was to provide S-Bank information about the behavior
of their non-maturity retail deposits and suggest a model that can predict the future
values in a negative interest rate environment. We compared different models and con-
cluded that the SARIMAX is the most accurate model for these. K-means and Gaussian
Mixture clustering methods divided the customers into similar segments, which increased
the accuracy of the models in most of the cases. However, clustering did not seem to
affect the results of the final SARIMAX-model that was selected based on the accuracy
measures for the whole data set. The presented method that uses clustering to improve
the accuracy could be developed further by defining the SARIMAX parameters for each
cluster separately.
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B Summary Statistics

End of the Period

Start of the Period

Mean 421.97 675.7
Median 114.98 168.55
Std Dev 1335.78 2431.81
Minimum —235.31 —24.87
Maximum 42514.08 100405.87
Skewness 14.63 19.55
Kurtosis 330.18 633.26

Table 31: Summary statistics of the data in the B1 dataset

Start of the Period End of the Period

Mean 610.15 1191.68
Median 71.75 83.05
Std Dev 2797.69 6750.86

Minimum —136.42 —49.85

Maximum 77483.42 213695.17
Skewness 13.46 17.26
Kurtosis 247.11 420.65

Table 32: Summary statistics of the data in the B2 dataset

Start of the Period End of the Period

Mean 1303.28 2671.29
Median 153.06 334.08
Std Dev 4852.84 11749.24

Minimum —14526.97 —53.41
Maximum 113889.58 405507.1
Skewness 10.36 17.31
Kurtosis 148.24 451.5

Table 33: Summary statistics of the data in the A2 dataset
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C Self Assessment

C.1 Project Implementation

The scope of the work has been mostly unchanged throughout the project, with the imple-
mentation largely following the initial project plan. The main departure from the initial
plan is that the analysis of the effect of the Covid-19 pandemic, initially thought of as one
of the main project goals, has been kept relatively brief as the project has mainly focused
on modeling and forecasting. The Covid-19 effects have been investigated by comparing
the variances before and after the start of the pandemic. However, the suggested model
is selected such that the accuracy of the model before and during the pandemic is taken
into account.

None of the risks considered in the initial project plan or the interim plan were realized,
with the exception of the risk “Complete change in in the existing economic environment
and monetary policy”, which was added to the interim plan in retrospect following the
invasion of Ukraine. In addition, the interest rates have risen positive and are expected
to increase further in the future. Historically, changes in interest rate levels have effected
the model selection.

Throughout the project, we have met with the client organization regularly. During these
meeting have have received guidance and answers to our questions regarding the topic.

C.2 Successes and Failings

The main project goal of developing a justified and documented model for analysing the
risk characteristics of non-maturity retail deposits, has been achieved and the feedback
from the client has been positive. The suggested model and its parameters have been
derived with S-Bank-specific data. We have also provided the codes used in this project
to allow further testing, research or implementation.

On the other hand, our team has not been able to gain any unforeseen insight, pandemic-
related or otherwise, based on the data. The results suggest that the best model for
non-maturity deposits would not get more accurate with segmentation. This might be
due to the seasonality of this model or the low degree of its variables. We did not have
time to investigate aforementioned things further due to the large workload towards the
end of the project.

C.3 Takeaways

In hindsight, the project plan could be revised as the workload of the last weeks of the
project has been somewhat demanding with the writing of the final report and the final
stages of modeling coinciding with holidays and other team-member arrangements, such
as work. In particular, our team could have begun analysing the project results earlier,
possibly even before the interim report presentations. These results could have guided
the aim of the project. However, our team could not have begun the modeling process
earlier as the data was not available to us immediately, which made the uneven schedule
to some extent unavoidable.

The presentation schedules and details, particularly the presentation lengths, could have
been announced earlier.
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